On matching and semitotal domination in graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

Algorithmic Aspects of Semitotal Domination in Graphs

For a graph G = (V,E), a set D ⊆ V is called a semitotal dominating set of G if D is a dominating set of G, and every vertex in D is within distance 2 of another vertex of D. The Minimum Semitotal Domination problem is to find a semitotal dominating set of minimum cardinality. Given a graph G and a positive integer k, the Semitotal Domination Decision problem is to decide whether G has a semito...

متن کامل

On matching and total domination in graphs

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set ofG if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investi...

متن کامل

A characterization relating domination, semitotal domination and total Roman domination in trees

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

متن کامل

Location-domination and matching in cubic graphs

A dominating set of a graph G is a set D of vertices of G such that every vertex outside D is adjacent to a vertex in D. A locating-dominating set of G is a dominating set D of G with the additional property that every two distinct vertices outside D have distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u) ∩ D 6= N(v) ∩ D where N(u) denotes the open neighborhood of u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2014

ISSN: 0012-365X

DOI: 10.1016/j.disc.2014.01.021